Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wen-Ying Wei, ${ }^{\text {a }}$ Z Zhen Wang, ${ }^{\text {a }}$

 Jin-Yu Han ${ }^{\text {b }}$ and Yan-Hua Yin ${ }^{\text {a }}$${ }^{\text {a }}$ The 718 Research Institute of CSIC, HanDan 056027, People's Republic of China, and ${ }^{\mathbf{b}}$ Key Laboratory for Green Chemical Technology of the State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: wwy7324@eyou.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.041$
$w R$ factor $=0.119$
Data-to-parameter ratio $=12.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

catena-Poly[piperazinium(2+) [tetraaquazinc(II)-μ-benzene-1,3,5-tricarboxylato-diaquacobalt(II)-μ-benzene-1,3,5-tricarboxylato] dihydrate]

The asymmetric unit of the title polymer, $\left\{\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)[\mathrm{ZnCo}-\right.$ $\left.\left.\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, contains one independent $\mathrm{Zn}^{\text {II }}$ atom and one independent $\mathrm{Co}^{\mathrm{II}}$ atom, each of which is located on an inversion center. The benzene-1,3,5-tricarboxylate molecule bridges the $\mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{II}}$ atoms in two coordination modes, forming a one-dimensional polymeric zigzag chain structure; the chains are further linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a three-dimensional network. In the micropore formed by the packing of the zigzag chains, there is one piperazinium $(2+)$ cation and two water molecules.

Comment

Benzene-1,3,5-tricarboxylate usually plays the role of a bridging ligand in metal complexes (Wang et al., 2005; Wei et al., 2006). We present here the structure of the title $\mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{II}}$ complex, (I), in which benzene-1,3,5-tricarboxylate (BTC) ligands link the $\mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{II}}$ atoms in two kinds of coordination modes, forming a polymeric complex.

(I)

The title polymer contains two independent atoms, $\mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Co}^{\text {II }}$, located at the centers of centrosymmetric ZnO_{6} and CoO_{6} octahedra (Fig. 1). Each BTC ligand bridges one $\mathrm{Zn}^{\text {II }}$ and one $\mathrm{Co}^{\mathrm{II}}$ atom, forming a polymeric zigzag chain running along [011]. Two carboxylate group of the BTC coordinate to the $\mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{II}}$ atoms, one in a monodentate fashion and the other in a bidentate chelating fashion; the third carboxylate group of the BTC is not coordinated to the $\mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{II}}$ atoms. The packing of the chains forms quadrilateral pores, which are occupied by one piperazinium ($2+$) cation and two water molecules (Fig. 2).

Experimental

An aqueous solution (15 ml) of benzene-1,3,5-tricarboxylic acid $(0.210 \mathrm{~g})$ and piperazine hexahydrate $(0.132 \mathrm{~g})$ was mixed with an

metal-organic papers

aqueous solution (5 ml) of zinc(II) nitrate hexahydrate $(0.149 \mathrm{~g})$ and cobalt(II) nitrate hexahydrate (0.146 g) with continuous stirring. The mixture was sealed in a 40 ml Teflon-lined stainless steel vessel and heated at 453 K for 96 h under autogenous conditions. After cooling to room temperature, the resulting product was filtered off to obtain pink crystals of (I) (about 76.2% yield based on the Zn source). IR ($\mathrm{KBr}, \nu \mathrm{cm}^{-1}$): 3120, 2446, 2345, 1610, 1533, 1429, 1426, 1398, 1363, 1202, 1087, 754, 712, 542, 521, 459; elemental analysis calculated for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{CoN}_{2} \mathrm{O}_{20} \mathrm{Zn}$: C 34.25, H 4.45, N 3.63%; found: C 34.29, H 4.52, N 3.58\%.

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{ZnCo}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)_{2}{ }^{-}\right.$	$\gamma=102.538(6)^{\circ}$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$V=731.8(5) \AA^{3}$
$M_{r}=770.81$	$Z=1$
Triclinic, $P \overline{1}$	$D_{x}=1.749 \mathrm{Mg} \mathrm{m}^{-3}$
$a=7.189(3) \AA$	Mo $\mathrm{A} \alpha$ radiation
$b=10.588(4) \AA$	$\mu=1.48 \mathrm{~mm}^{-1}$
$c=10.593(4) \AA$	$T=294(2) \mathrm{K}$
$\alpha=110.675(5)^{\circ}$	Block, pink
$\beta=91.429(6)^{\circ}$	$0.20 \times 0.18 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.485, T_{\text {max }}=0.813$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0648 P)^{2}\right.} \\
&+1.1797 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.72 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.77 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.119$
$S=1.04$
2549 reflections
212 parameters
H -atom parameters constrained

3672 measured reflections 2549 independent reflections 2137 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=25.0^{\circ}$

Table 1

Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots \cdot$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 7^{\mathrm{i}}$	0.90	2.05	2.901 (4)	156
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O}^{\mathrm{i}}$	0.84	1.84	2.672 (4)	170
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{C} \cdot \mathrm{O}^{\text {i }}$	0.85	1.90	2.751 (5)	180
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\text {ii }}$	0.90	2.44	3.033 (4)	124
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 6^{\text {iii }}$	0.90	1.87	2.758 (4)	169
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 5^{\mathrm{iv}}$	0.85	1.89	2.721 (4)	168
$\mathrm{O} 8-\mathrm{H} 8 B \cdots \mathrm{O} 4^{\mathrm{iv}}$	0.85	1.92	2.755 (3)	167
$\mathrm{O} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{v}}$	0.85	1.80	2.641 (4)	168
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{D} \cdots \mathrm{O} 9^{\mathrm{vi}}$	0.85	2.09	2.920 (5)	167
O9-H9A . . O10	0.84	1.96	2.756 (5)	156
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 2$	0.85	1.85	2.653 (4)	158
Symmetry codes: $-x+2,-y+2,-z+$	$\begin{gather*} -x+1,-y+1,-z+1 ; \quad \text { (ii) } \quad x+1, y+1, z \tag{iii}\\ x, y-1, z ; \text { (v) } x, y, z-1 ;(\mathrm{vi})-x+1,-y+1,-z \end{gather*}$			

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, $\mathrm{N}-\mathrm{H}=0.90 \AA$ and $\mathrm{O}-\mathrm{H}=0.84-0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine

Figure 1
View of a segment of the title polymer (I) with 30% probability displacement ellipsoids (arbitratry spheres for H atoms) [Symmetry codes: (A) $-x,-y,-z+1$; (B) $-x,-y+1,-z$; (C) $-x+2,-y+2,-z]$.

Figure 2
Packing of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.
structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray instrument Inc., Madison, Wisconsin, USA.
Wang, X.-L., Liu, F.-C., Li, J.-R. \& Ng, S. W. (2005). Acta Cryst. E61, m123m125.
Wei, W.-Y., Dong, Y., Han, J. \& Chang, H. (2006). Acta Cryst. E62, m26m27.

